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ABSTRACT  

Position data is expected to play a central role in a wide 
range of mobile computing applications, including 
advertising, leisure, safety, security, tourist, and traffic 
applications. Applications such as these are 
characterized by large quantities of wirelessly Internet-
worked, position-aware mobile objects that receive 
services where the objects’ position is essential. The 
movement of an object is captured via sampling, 
resulting in a trajectory consisting of a sequence of 
connected line segments for each moving object. This 
paper presents a technique for querying these 
trajectories. The technique uses indices for the 
processing of spatiotemporal range queries on 
trajectories. If object movement is constrained by the 
presence of infrastructure, e.g., lakes, park areas, etc., 
the technique is capable of exploiting this to reduce the 
range query, the purpose being to obtain better query 
performance. Specifically, an algorithm is proposed that 
segments the original range query based on the 
infrastructure contained in its range. The applicability 
and limitations of the proposal are assessed via empirical 
performance studies with varying datasets and 
parameter settings. 

Keywords 
trajectory, moving objects, query processing, constrained 
movement, query window segmentation. 

1. INTRODUCTION 
The continued advances in hardware and software technologies 
such as processors, storage media, graphical displays, positioning 
systems, and wireless communications promise that the coming 

years will bring about large quantities of online, position-aware 
mobile objects [1]. Such objects include mobile-phone terminals, a 
diverse range of personal digital assistants, electronic clothing, and 
various kinds of vehicles. Estimates are that by the year 2003, there 
will be 500 million users of mobile-phone terminals [6]. US law 
will soon require that mobile phones be position aware. A 
wristwatch with GPS is already available to consumers. 

The human users of these objects will employ a range of services 
made available to them via the Internet that use position data as an 
essential ingredient. For example, humans wearing smart suits and 
engaged in action sports may receive warnings of impending 
dangers, and emergency support may be dispatched when a suit 
senses that its wearer is in distress.  

In order to provide this type of functionality, the services receive 
samples of the position of each moving object, which enables them 
to construct a trajectory for each object that represents the object’s 
movement. Trajectories are also termed polylines and consist of 
connected line segments. Manipulating and querying these 
representations of movements in space and time is inherently 
challenging. The amount of collected data is proportional to the 
elapsed time. In connection with this new type of spatiotemporal 
data we have to consider new types of queries [16] when designing 
new indexing techniques and query processing algorithms. 

Generally, applications dealing with moving objects may be 
grouped according to their three movement scenarios. We 
distinguish among unconstrained movement (vessels at sea), 
constrained movement (cars, pedestrians), and movement in 
networks (trains and, in some cases, cars). The latter category is an 
abstraction of constrained movement, i.e., for cars, one might be 
only interested in their position with respect to the road network, 
rather than in the absolute coordinates. The movement effectively 
occurs in a different space than for the first two scenarios. All three 
scenarios may apply to mobile users, since mobile terminals can 
exist in cars, ships, trains, or can in general be hand held devices. 

Objects that constrain movement are termed infrastructure. For 
moving cars, examples of infrastructure are buildings, lakes, and 
pedestrian zones, but also roadblocks, or slow-moving traffic. 
From the above examples one can see that infrastructure can be 
categorized as well. The simplest type is static infrastructure, i.e., 
spatial objects that exist and do not change “throughout time.” 
Conversely, infrastructure may be dynamic, in which case elements 
may appear and disappear (road blocks), as well as change 
throughout their existence (slow-moving traffic).  

In this work, we devise a new technique that utilizes infrastructure 
when processing spatiotemporal range queries in constrained-
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movement scenarios. To obtain a first assessment of this approach, 
we only consider static infrastructure. We base our approach on a 
two-step technique used in spatial query processing that utilizes an 
index containing approximations of the data. In considering 
infrastructure, we introduce an additional pre-processing step in 
which we do not actually query the trajectory data itself, but the 
infrastructure. A spatiotemporal range query, QW, is executed 
against the infrastructure. Depending on this result, query 
processing may stop here, i.e., QW is totally covered by 
infrastructure, or QW is segmented into a set of smaller query 
windows, qwi, which are either used for querying the trajectory 
data, or, alternatively, the original range query is used. For query 
window segmentation, we devise an algorithm that takes the 
infrastructure and spatiotemporal range query, QW, as arguments 
and returns a set of smaller query windows, qwi. An important 
characteristic to be considered in the segmentation process is the 
shapes of the resulting query windows. Kamel and Faloutsos [5] 
discuss a formula to predict R-tree performance for a uniform 
spatial dataset and implicitly devise the shape of an optimal query 
window as well. It turns out that square query windows are 
preferable over elongated, rectangular ones. Consequently, the 
algorithm devised aims to produce query rectangles that are as 
square as possible. 

Previous work exists towards processing multiple query windows. 
Papadopoulos and Manolopoulos [12] discuss an approach in 
which they use a Hilbert ordering of the query windows and an 
LRU-buffer in connection with indexing. This work is based on 
previous work on multiple query optimization [17]. Leutenegger 
and Lopez [7] describe a model to predict R-tree performance 
when using buffering. Their approach is based on the prediction of 
R-tree performance presented in [5]. In this paper, we adapt the 
approach of Papadopoulos and Manolopoulos [12] to process the 
set of segmented query windows, qwi.  

To the best of our knowledge, no other work exists that uses query 
window segmentation based on structural information, i.e., 
infrastructure, to reduce the query processing cost. 

The outline of the paper is as follows. Section 2 describes 
trajectories and infrastructure in more detail. Section 3 gives the 
new query processing technique. This includes a discussion of the 
shapes of query windows and a presentation of the query window 
segmentation algorithm. Section 4 presents the performance study 
for various types of trajectories and infrastructure. Section 5 offers 
conclusions and research directions. 

2. MOVING OBJECTS AND 
INFRASTRUCTURE 
This section briefly introduces spatiotemporal data in the form of 
trajectories, and it introduces infrastructure, which we will take to 
refer to static objects that constrain movement. 

2.1 Trajectories 
To record the true movements of objects, we would have to know 
their positions at all times, or better, on a continuous basis. 
However, current technology only allows us to sample an object's 
position, i.e., to obtain the position at discrete instances of time, 
such as every few seconds. 

A first approach to represent the movements of objects would be to 
simply store the position samples. This would mean that we could 

not answer queries about the objects' movements at times in-
between sampled positions. Rather, to obtain the entire movement, 
we have to interpolate. The simplest approach is to use linear 
interpolation, as opposed to other methods such as polynomial 
splines [2]. The sampled positions then become the endpoints of 
line segments of polylines, and the movement of an object is 
represented by an entire polyline in three-dimensional space. In 
geometrical terms, the movement of an object is termed a 
trajectory (we will use “movement” and “trajectory” 
interchangeably). The solid line in Figure 1 represents the 
movement of a point object. Space (x- and y-coordinates) and time 
are combined to form a single coordinate system. The dashed line 
shows the projection of the movement on the two-dimensional 
plane [13]. Figure 2 shows the spatiotemporal data space (the cube 
in solid lines) and several trajectories (the solid polylines). Time 
moves in the upward direction, and the top of the cube is the time 
of the most recent position sample. The wavy-dotted lines at the 
top symbolize the growth of the cube with time. Interpolating 
trajectories raises questions on the uncertainty associated with a 
particular representation [13]. 

 

Figure 1: A moving point object trajectory  

 

Figure 2: A spatiotemporal space with several trajectories 

2.2 Infrastructure 
Infrastructure elements obstruct the movements of objects. As we 
saw previously, depending on the type of the moving object, what 
constitutes infrastructure might change. Figure 3 gives an example 
of trajectories affected by infrastructure. The five images represent 
temporal snapshots of the trajectories, i.e., slices of a cube such as 
the one shown in Figure 2. The data was generated using the 
GSTD tool [15]. 

With respect to indexing, trajectories pose a serious challenge. By 
using an R-tree like access method, we approximate the objects to 
be indexed. Approximating a line by a Minimum Bounding Box 
(MBB) introduces a large amount of so-called “dead space.” This 
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means that even in areas where there are no trajectories, the index 
“believes” that there are. 

In terms space and where movement can occur, infrastructure 
represents “black-out” areas, meaning that there are no trajectories 
to index where there are infrastructure elements. However, because 
of dead space, those areas are not empty in the index and will incur 
unnecessary search in the index as well as produce a certain 
number of falsely reported answers, which must subsequently be 
eliminated. Both lead to extra I/O operations and thus negatively 
affect performance. To eliminate this extra I/O, we can use 
infrastructure in a pre-processing step, i.e., why should we look for 
objects, where there cannot be any? The strategy we choose is to 
query the infrastructure to save on querying the trajectory data. 
Overall, this will turn out to be favorable, since the number of 
infrastructure elements can be assumed to be very small compared 
to the trajectory data. Further, the trajectory data is growing with 
time, whereas the size of the infrastructure data remains more or 
less constant. In the following, we devise a query processing 
strategy to include infrastructure in a pre-processing step. 

3. QUERYING MOVING OBJECT DATA 
Trajectories and the relevant queries require new query processing 
techniques. In previous work, the focus was on the design of new 
access methods [16]. In the following, we devise a new query 
processing technique, which is based on techniques known from 
spatial databases. 

3.1 Three-Step Query Processing 
In spatial databases, a two-step technique is used to process 
queries. Using approximations of the real spatial objects in the 
index (minimum bounding rectangles (boxes), MBR (MBB)) 
requires filtering out false drops from the set of solutions we obtain 
after processing a query through the index. In many cases, the real 
spatial entities in the database have to be examined to decide 
whether they belong in the final result [3]. 

Section 2.2 states that where there is infrastructure there cannot be 
any moving objects. A query window might range over 
infrastructure, thus requiring us to query “empty” space. It should 
be noted that a query window ranges over two spatial and one 
temporal dimension. We use infrastructure only to limit the two 
spatial dimensions. The temporal dimension remains unaffected. 

We extend the two-step technique to include an additional pre-
processing step, terrmed query window segmentation. We only 
want to consider those parts of the query window, QW, not ranging 
over infrastructure. The outcome of this step can be either one of 
the following three cases. In case (i) the set of segments is empty, 
we stop processing the query since it only ranges over 

infrastructure. We obtain a set of smaller query windows, qwi, and 
processing them is (ii) beneficial, or (iii) is not beneficial, in 
comparison to processing the original query window. Beneficial in 
this context is defined as a lower number of page accesses needed 
to process the query. 

The technique for processing spatiotemporal range queries 
involving infrastructure thus comprises the following three steps. 

1. Segmenting the original query window, QW, into a set of 
smaller query windows, qwi. 

2. Querying the index depending on the outcome of step 1 
to retrieve a candidate set of solutions. 

3. Evaluating all objects contained in the candidate set of 
solutions. 

To efficiently process step 1, we can index the infrastructure 
elements by using a spatial access method such as the R-tree. 
Furthermore, assuming that the entire infrastructure is known in 
advance, we can even bulk load such an index (cf. [5]). 

3.2 Query Window Split Algorithms 
An essential part of the three-step technique involves the 
segmentation of the query window. Before we can devise an 
algorithm for this task, we have to establish what is an optimal 
query window, i.e., which shapes of query windows should this 
segmentation algorithm aim for? 

3.2.1 The Ideal Query Window 
Kamel and Faloutsos [5] derive a formula to determine the number 

of disk accesses needed to process an arbitrary range query iq . 

Their formula assumes an R-tree based index, but is independent of 
a particular construction method. It is assumed that the centroids of 
all query ranges are uniformly distributed over the data space, 
which is the unit square. The number of disk accesses, P , for a 

query window, iq  with extents ixq  and iyq  in the respective 

dimensions, is computed as follows. 

 ( , ) Total Areaix iy ix y iy x ix iyP q q q L q L N q q= + ⋅ + ⋅ + ⋅ ⋅  (1) 

In Formula (1), Total Area denotes the sum of all the areas of the 

nodes of the tree, and xL  and yL  are the sums of the x and y 

extents of all the nodes in the index. 

In our case, the assumption that the data is uniformly distributed 
over the whole data space does not hold because of the 
infrastructure. Still, if we assume that the data is uniformly 

 

Figure 3: Moving object snapshots and infrastructure 
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distributed in the data space not occupied by infrastructure, we can 
use the above formula as a first approximation. 

What we can see from Formula (1) is the importance not only of 
minimizing the area of the query window, but its perimeter as well. 
Having two query windows with the same aerial extent, the one 
with the smaller perimeter requires fewer disk accesses. The shape 
that minimizes its perimeter for a given area size is the square. 
Consequently, what we can derive for the query segmentation 
algorithm is that the resulting shapes should resemble a square as 
much as possible. Similar results on the shape of a query window 
were reported by Pagel et al. [10]. 

3.2.2 Segmentation Algorithm—the Principle 
We proceed to devise a segmentation algorithm for query windows. 
The parameters of the algorithm are a query window and a set of 
infrastructure elements. The output of the algorithm is a set of 
query windows, i.e., rectangles. 

The general principle is to decompose a given query window based 
on the infrastructure contained in it. The intuition is to “chop” the 
parts of the query window not occupied by infrastructure into well-
shaped rectangles, i.e., as square as possible. In Figure 4 where few 
but large infrastructure elements are shown as black rectangles, the 
possible outcome of such a segmentation process is shown as white 
rectangles.  

 

Figure 4: A query window segmentation example 

To segment the query window, i.e., to determine the rectangles, the 
algorithm proceeds from the lower-left corner of the query window 
to the upper-right. Given a seed point, i.e., the lower-left corner, 
we try to span a rectangle as far towards the upper right corner as 
possible. Consider the situation of Figure 5(a). Here, we want to 
span a rectangle from seed point S0 (seed 0) to the upper right 
corner. Infrastructure elements 1, 2, and 3 constrain us. As a result, 
A and B are the two candidate rectangles for this step.  

Seed points are the lower-left corners of all rectangles. Seed points 
are determined in two stages. Initially, the algorithm finds all seed 
points on the left and lower side of the query window (they would 
not be found otherwise). Further, more seed points are found 
during the course of the algorithm when new rectangles are 
segmented, i.e., the resulting rectangles of the segmentation 
process generate new seed points. The algorithm terminates when 
all seed points have been considered. 

3.2.3 Segmentation Algorithm—a Detailed View 
In the following, we give a more detailed description of the 
algorithm. The pseudo code of the algorithm can be found in [15]. 
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Figure 5: Two steps in the query window segmentation process  

Initially, the algorithm determines a first set of seed elements. 
Those include (i) the origin of the query window (lower-left 
corner), (ii) the upper-left corners of all infrastructure elements 
touching with the left side of the query window, and (iii) the lower 
right corners of the elements touching the bottom side of the query 
window.  

To clarify, if an infrastructure element intersects with the query 
window, the element’s part outside is truncated for the purpose of 
segmenting the query window. Subsequently, the algorithm iterates 
over all seed elements, initial ones and newly computed ones, to 
compute query window segments. 

To determine a valid query window segment, the algorithm tries to 
find infrastructure elements that bound a rectangle whose origin is 
the current seed point. In the example in Figure 5(a), the algorithm 
determines three candidate bounds. Elements 1, 2, and 3 constrain 
a rectangle originating from seed point S0. Those constraints leave 
us with two possible rectangles, A and B. The algorithm evaluates 
both and chooses element B because of better proportions (cf. 
Section 3.2.1). The criterion used is the perimeter ratio of the 
possible rectangles, i.e., longer side divided by smaller side. For a 
square this ratio is 1, for rectangles this ratio is larger. The 
rectangle with the smallest ratio is selected. 

Having determined the best rectangle, we have to judge whether its 
shape is appropriate, i.e., it could be elongated in the x or y 
direction. An example check would be that the length in the x-
direction is n times longer than in the y-direction, where n is a 
threshold parameter of the algorithm. The outcome of this step can 
be that the shape is elongated in the x-direction, in the y-direction, 
or the shape is acceptable, i.e., it is reasonably close to a square. 

The type of shape determines how to compute the final rectangle 
and new seed points. If the rectangle is elongated in the x-
direction, the rectangle is possibly shortened such that it ends with 
its upper constraint (element 1 in Figure 6(a)) or an element 
constraining the rectangle from below (element 2 in Figure 6(a)). 
The algorithm chooses the element that is the most restrictive. In 
the example of Figure 6(a) that is element 1. If neither element is 
restrictive, i.e., if both elements have larger y-extensions than our 
rectangle, the rectangle is left unaltered. A similar approach applies 
in case the rectangle is elongated in the y-direction.  

The rationale behind this approach is that by disallowing 
extensively elongated rectangles, we allow for a possibly better 
choice of a rectangle at a later step in the algorithm (cf. Figure 
6(a)). 
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As for new seed points, Figure 6(b) illustrates all possible 
candidates. Generally, we can encounter six different types of new 
seed points:  

1. The upper left corner of the newly found rectangle,  

2. the lower right corner,  

3. meeting point with the upper constraint, 

4. meeting point with the right constraint, 

5. meeting point with an additional upper bounding element 
that was not considered as a constraint, and 

6. meeting point with an additional right bounding element. 

For cases 5 and 6, since there can be more than one upper (right) 
bounding element, the algorithm can also find more than one seed 
point in each case. 

Remember, seed points are the lower-left corners of future 
rectangles, thus they can only be found on the upper side (cases 1, 
3, and 5), and on the right side of a newly found rectangle (cases 2, 
4, and 6). 
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Figure 6: (a) elongated rectangles, and (b) seed points 

The algorithm has to check all six alternatives in case of a well-
shaped query window. In case the rectangle was elongated (part 3a 
and 3b), we only have to consider cases 1 and 2. The reasons can 
be derived from the definition and the three different scenarios and 
the definition of the seed point cases. 

3.2.4 A Word on Running Time 
The running time of the algorithm is determined by the number of 
infrastructure elements, I, and the number of query windows, Q, 
i.e., the result of the segmentation process. Assuming a uniform 
distribution of the infrastructure elements over the data space, Q is 
found to be two to three times I. This factor, so far, is only 
empirically established. 

The main body of the algorithm is a loop over the set of seed 

points. The number of seed points, S, equals Q, i.e., for every 
created query window, there has to be one seed point. The costliest 
operation in this loop is to sort all existing elements (infrastructure 
elements plus already created rectangles) once in the x and then in 
the y direction for each seed point. Assuming sorting is of cost 

logn n , the cost of sorting for the first segmented query window is 

I log I , whereas the cost for the last is (Q I 1)log(Q I 1)+ − + − . To 
compute the total cost we compute the sum of an arithmetic series.  

 
2 2 2 2

0.5 ((Q I 1) log(Q I 1) I logI)
((Q I 1) log(Q I 1) I logI) =

0.5((Q I 1) log (Q I 1) I log I

⋅ + − ⋅ + − + ⋅ ⋅
+ − ⋅ + − − ⋅

+ − ⋅ + − − ⋅
 (2) 

The running time is therefore 
2 2

( log )O n n . 

3.3 Query Window Segmentation and 
Indexing 
The second step of the three-step technique uses an index to 
process the query. Two access methods for trajectory data are a 
modified version of the R-tree and the TB-tree (Trajectory Bundle) 
[16]. The TB-tree possesses special capabilities in processing 
spatiotemporal query types (cf. [16]). Segments in the TB-tree are 
grouped together based on the trajectories they belong to. The R-
tree does not preserve trajectories, but uses purely spatial 
characteristics such as proximity. Thus, nodes in the TB-tree are 
larger and more wasteful with respect to space. Consequently, such 
an index has a higher degree of overlap with respect to 
infrastructure. We modify both access methods to allow for the 
buffering of retrieved nodes, i.e., pages. We adopt what is known 
as the “Least Recently Used (LRU)” approach, where a newly 
referenced page replaces the “has-not-been-referenced-for-the-
longest-time” page. This scheme exploits the overlap in page 
retrievals caused by simultaneous execution of spatially close 
query windows. 

To efficiently utilize the LRU buffer, we order the segmented 
query windows using a space-filling curve, namely the Hilbert 
curve. Basic properties of space-filling curves are: (i) they cover an 
“area” completely, where area might also refer to higher 
dimensional volumes, (ii) each point in space is visited exactly 
once, and (iii) neighbor points in the native space are likely to be 
close neighbors on the space-filling curve. Property (iii) is used to 
measure the quality of the space-filling curve, i.e., its ability to 
preserve proximity. Moon et al. [8] show analytically and 
empirically that the Hilbert curve achieves better clustering than 
the z ordering and Gray-code curve. Further experiments [4] give 
similar results. 

The Hilbert curve seen in Figure 7 is constructed in a self-similar 
way by using rotation and mirroring. Algorithms for the 

 

Figure 7: Hilbert space filling curves 
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construction of space filling curves can be found on the Web [9] 
and in the literature [4]. 

4. EXPERIMENTAL STUDIES 
The goal of the experiments is twofold. First, we try to establish 
the conditions under which query window segmentation is useful. 
That is to distinguish when case (ii) or (iii) is the best for 
processing spatiotemporal range queries. Second, segmenting 
query windows might prove to be more or less beneficial for 
different access methods. Here, we consider the R-tree and the TB-
tree as mentioned in Section 3.3.  

The parameters in our experiments are varying infrastructure 
datasets, query windows, and LRU-buffer sizes. 

4.1 Varying Query Window Size and Datasets 
In the first set of experiments, we compare the cost of querying 
trajectories using the original query windows, QW, to using the set 
of segmented query windows, qwi, for different query windows 
and infrastructure datasets. 

Initially, we use an artificial set of infrastructure elements as shown 
in Figure 8. The real-world correspondence of this infrastructure 
composition could be a city with city blocks. We create trajectories 
for 500 moving objects that are uniformly distributed over the 
whole data space. A trajectory itself consists of 500 segments, 
leading to a total of 250k segments, i.e., the total number of entries 
in the index. The size of the LRU buffer is 16 Kbytes, which 

corresponds to 16 times the page size of the index, which is 1 
Kbyte. 

Figure 8 shows a temporal snapshot of the trajectory data used in 
the following experiments. The infrastructure elements are shown 
as gray rectangles. Again, we use GSTD++ [15] to generate 
trajectory data. The parameters are chosen such that the density of 
the trajectories is higher towards the center of the data space and 
the objects move around their initial positions. Using this data, we 
conduct six experiments with a varying query window size.  

 

Figure 8: Trajectory dataset snapshot  

The outcome of the experiments is shown in Table 1. For each 
query window, we measure the number of node accesses using the 
original query window (QW) and the set of segmented query 
windows (qwi). For the latter, the number in parenthesis indicates 
the LRU buffer hits. The number of query windows that constitute 

Table 1: Experimental results: various query window sizes and datasets 

Experiment 1 2 3 

QW (R/TB-tree) 175 196 123 167 89 141 
N 1 1 1 
qwi (R/TB-tree) 118(0) 142(0) 100(0) 134(0) 87(0) 122(0) 

Visualization 

   

Experiment 4 5 6 
QW (R/TB-tree) 319 289 166 172 486 368 
N 7 56 7 
qwi (R/TB-tree) 319(393) 289(678) 166(1742) 172(4584) 436(400) 321(646) 

Visualization 
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qwi is given as N. Assuming the data space is the unit cube, the 
temporal extent of the queries shown in Table 1 is 0.2 in the midst 
of the temporal range, i.e., from 0.4 to 0.6. We leave the temporal 
range constant throughout all of the experiments, since we 
observed that varying it only increases/decreases the absolute 
number of visited nodes, but not the relative number, i.e., nodes 
visit for QW vs. qwi.  

We observe that with an increasing query window size, the 
advantage of segmentation decreases. Also, it seems that only 
infrastructure elements that are on the border of the query window 
matter. Experiments 1, 2, and 3 show that although N is the same 
in all three cases, because the corners of the infrastructure coincide 
with the query window in experiment 1, the gap between using 
QW and qwi is larger than in experiments 2 and 3, where the 
boundary of QW is inside the infrastructure elements. The larger 
the part of the query window boundary that is inside the 
infrastructure, the smaller is the advantage of segmentation 
(experiments 2 and 3). In experiment 4, we extend QW such that 
no infrastructure intersects with the boundary of the query window. 
Here, segmentation offers no advantage any more. 

In comparing the two access methods, we see that segmentation is 
beneficial for the TB-tree in more situations than for the R-tree. In 
experiment 3, while segmentation offers virtually no advantage for 
the R-tree index (89 vs. 87 node accesses), segmentation for the 
TB-tree still proves to be beneficial (141 vs. 122 node accesses). 
This can be explained by the properties of the indices as outlined in 
Section 3.3, i.e., the TB-tree nodes have more dead space. 

Next, we perform experiments with a random infrastructure 
scenario. We compute an arbitrary set of rectangles, where the 
number as well as the minimum and the maximum extents are input 
parameters of the data generator [15]. The parameters of the 
trajectory data are, again, 250k segments stemming from 500 
moving objects uniformly distributed over the data space. 
Experiment 5 in Table 1 shows the experimental outcome. The 
infrastructure scenario consists of many (900), but small elements. 
Consequently, the segmentation process produces many, small 
query windows (56). In this case, choosing qwi over QW offers no 
advantages in terms of query processing performance. This shows 
that the number and size of infrastructure elements determine the 
efficiency of our approach. 

4.2 Varying LRU Buffer Sizes 
To show the effects of varying LRU buffer sizes, we choose 
experiment 6 in Table 1 as a basis. The LRU buffer is used to store 
retrieved pages in main memory. Thus, revisiting them does not 
require a disk access. Now, in case of segmenting a query window, 
the resulting query windows, qwi, are spatially co-located. 
Naturally, when executing the queries sequentially, many nodes in 
the index will be accessed multiple times. Thus, if reducing the 
LRU buffer size, we reduce the advantage of using the segmented 
query windows over the original window. Figure 9 shows the 
number of page accesses and, conversely, the number of buffer hits 
when varying the LRU buffer size from 1 to 16 Kbytes.  

We observe that the TB-tree benefits more from using a buffer than 
the R-tree. Because of the properties of a TB-tree index, for a set of 
queries that are spatially close, it is more likely to access the same 
node more often than it is for the corresponding R-tree. 
Consequently, the TB-tree benefits more from a larger buffer than 
the R-tree does. 
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Figure 9: Performance study for varying LRU buffer size 

4.3 Summary of Experiments 
We can identify the following parameters that determine the 
effectiveness of query window segmentation. First, the larger the 
number of segmented query windows, qwi, the smaller the 
advantage over QW. Second, the more space infrastructure 
occupies within QW, the better. Third, the more of the 
infrastructure that is concentrated at the boundaries of QW, the 
better. The experiments show that infrastructure placed at the 
center of QW affords query window segmentation less than 
infrastructure located at the boundary. 

In comparing the R-tree and the TB-tree, we saw that the latter 
benefits in more cases from query window segmentation. Further, 
it benefits more from a larger LRU buffer than the R-tree. The 
reasons here can be found in how the respective access methods 
construct the indices. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we present a new query processing technique for 
trajectory data stemming from a constrained movement scenario. 
We extend the well-known two-step technique from spatial query 
processing to include an additional pre-processing step prior to the 
filter step. Given an arbitrary spatiotemporal range query, QW, the 
aim of this step is to segment QW into a set of smaller query 
windows, qwi. We exploit infrastructure information, i.e., spatial 
objects that constrain movement, to segment QW. The rationale is 
that we “chop” away those parts of QW that range over 
infrastructure, i.e., those parts of the data space that do not contain 
trajectory data. 

We devise an algorithm for segmenting the QW based on 
infrastructure. This segmentation can have three outcomes. Query 
processing can be (i) stopped after the pre-processing step, i.e., 
QW is totally covered by infrastructure, (ii) QW is segmented into 
a set of smaller query windows, qwi, which is used for querying the 
trajectory data, or (iii) the original range query is used. Case (i) is 
easy to decide. For cases (ii) and (iii), we depend on heuristics that 
are based on the outcome of the segmentation process. The results 
of the performance studies reported give a first indication for such 
heuristics. 

Although recent literature includes work on indexing trajectories of 
moving objects by maintaining the complete history of object 
movement [10] [18] [19], the work presented in this paper is the 
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first (i) to propose a query processing technique tailored towards 
trajectory data stemming from objects moving in scenarios 
constrained by infrastructure, and (ii) to use a pre-processing step 
that is based on data other than approximations of the trajectory 
data (infrastructure vs. approximation). 

This works points to several directions for future research. Using 
the outcome of the segmentation process directly might not be the 
most favorable choice. We can extend the segmentation algorithm 
to combine various query windows of qwi into larger ones. This 
will combine query window segmentation with the simultaneous 
execution of query windows [12]. Although we distinguish three 
cases as the outcome of the segmentation process, clear heuristics 
have to be derived for when to apply each case. Also, the 
framework is only empirically validated. Analytical studies should 
be used to back up the results. Finally, this work only used 
synthetic trajectory and infrastructure data. It would be interesting 
to study the performance of this approach using real data sets. 
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