
Querying the Trajectories of On-Line Mobile Objects

 Dieter Pfoser
Department of Computer Science

Aalborg University
Fredrik. Bajers Vej 7E

DK-9220 Aalborg Øst, DENMARK
+45-96359973

 pfoser@cs.auc.dk

 Christian S. Jensen
Department of Computer Science

Aalborg University
Fredrik. Bajers Vej 7E

DK-9220 Aalborg Øst, DENMARK
+45-96358900

 csj@cs.auc.dk

ABSTRACT

Position data is expected to play a central role in a wide
range of mobile computing applications, including
advertising, leisure, safety, security, tourist, and traffic
applications. Applications such as these are
characterized by large quantities of wirelessly Internet-
worked, position-aware mobile objects that receive
services where the objects’ position is essential. The
movement of an object is captured via sampling,
resulting in a trajectory consisting of a sequence of
connected line segments for each moving object. This
paper presents a technique for querying these
trajectories. The technique uses indices for the
processing of spatiotemporal range queries on
trajectories. If object movement is constrained by the
presence of infrastructure, e.g., lakes, park areas, etc.,
the technique is capable of exploiting this to reduce the
range query, the purpose being to obtain better query
performance. Specifically, an algorithm is proposed that
segments the original range query based on the
infrastructure contained in its range. The applicability
and limitations of the proposal are assessed via empirical
performance studies with varying datasets and
parameter settings.

Keywords
trajectory, moving objects, query processing, constrained
movement, query window segmentation.

1. INTRODUCTION
The continued advances in hardware and software technologies
such as processors, storage media, graphical displays, positioning
systems, and wireless communications promise that the coming

years will bring about large quantities of online, position-aware
mobile objects [1]. Such objects include mobile-phone terminals, a
diverse range of personal digital assistants, electronic clothing, and
various kinds of vehicles. Estimates are that by the year 2003, there
will be 500 million users of mobile-phone terminals [6]. US law
will soon require that mobile phones be position aware. A
wristwatch with GPS is already available to consumers.

The human users of these objects will employ a range of services
made available to them via the Internet that use position data as an
essential ingredient. For example, humans wearing smart suits and
engaged in action sports may receive warnings of impending
dangers, and emergency support may be dispatched when a suit
senses that its wearer is in distress.

In order to provide this type of functionality, the services receive
samples of the position of each moving object, which enables them
to construct a trajectory for each object that represents the object’s
movement. Trajectories are also termed polylines and consist of
connected line segments. Manipulating and querying these
representations of movements in space and time is inherently
challenging. The amount of collected data is proportional to the
elapsed time. In connection with this new type of spatiotemporal
data we have to consider new types of queries [16] when designing
new indexing techniques and query processing algorithms.

Generally, applications dealing with moving objects may be
grouped according to their three movement scenarios. We
distinguish among unconstrained movement (vessels at sea),
constrained movement (cars, pedestrians), and movement in
networks (trains and, in some cases, cars). The latter category is an
abstraction of constrained movement, i.e., for cars, one might be
only interested in their position with respect to the road network,
rather than in the absolute coordinates. The movement effectively
occurs in a different space than for the first two scenarios. All three
scenarios may apply to mobile users, since mobile terminals can
exist in cars, ships, trains, or can in general be hand held devices.

Objects that constrain movement are termed infrastructure. For
moving cars, examples of infrastructure are buildings, lakes, and
pedestrian zones, but also roadblocks, or slow-moving traffic.
From the above examples one can see that infrastructure can be
categorized as well. The simplest type is static infrastructure, i.e.,
spatial objects that exist and do not change “throughout time.”
Conversely, infrastructure may be dynamic, in which case elements
may appear and disappear (road blocks), as well as change
throughout their existence (slow-moving traffic).

In this work, we devise a new technique that utilizes infrastructure
when processing spatiotemporal range queries in constrained-

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
MobiDE 2001 USA
Copyright 2001 ACM 1-58113-412-6/01/05…$5.00

66

movement scenarios. To obtain a first assessment of this approach,
we only consider static infrastructure. We base our approach on a
two-step technique used in spatial query processing that utilizes an
index containing approximations of the data. In considering
infrastructure, we introduce an additional pre-processing step in
which we do not actually query the trajectory data itself, but the
infrastructure. A spatiotemporal range query, QW, is executed
against the infrastructure. Depending on this result, query
processing may stop here, i.e., QW is totally covered by
infrastructure, or QW is segmented into a set of smaller query
windows, qwi, which are either used for querying the trajectory
data, or, alternatively, the original range query is used. For query
window segmentation, we devise an algorithm that takes the
infrastructure and spatiotemporal range query, QW, as arguments
and returns a set of smaller query windows, qwi. An important
characteristic to be considered in the segmentation process is the
shapes of the resulting query windows. Kamel and Faloutsos [5]
discuss a formula to predict R-tree performance for a uniform
spatial dataset and implicitly devise the shape of an optimal query
window as well. It turns out that square query windows are
preferable over elongated, rectangular ones. Consequently, the
algorithm devised aims to produce query rectangles that are as
square as possible.

Previous work exists towards processing multiple query windows.
Papadopoulos and Manolopoulos [12] discuss an approach in
which they use a Hilbert ordering of the query windows and an
LRU-buffer in connection with indexing. This work is based on
previous work on multiple query optimization [17]. Leutenegger
and Lopez [7] describe a model to predict R-tree performance
when using buffering. Their approach is based on the prediction of
R-tree performance presented in [5]. In this paper, we adapt the
approach of Papadopoulos and Manolopoulos [12] to process the
set of segmented query windows, qwi.

To the best of our knowledge, no other work exists that uses query
window segmentation based on structural information, i.e.,
infrastructure, to reduce the query processing cost.

The outline of the paper is as follows. Section 2 describes
trajectories and infrastructure in more detail. Section 3 gives the
new query processing technique. This includes a discussion of the
shapes of query windows and a presentation of the query window
segmentation algorithm. Section 4 presents the performance study
for various types of trajectories and infrastructure. Section 5 offers
conclusions and research directions.

2. MOVING OBJECTS AND
INFRASTRUCTURE
This section briefly introduces spatiotemporal data in the form of
trajectories, and it introduces infrastructure, which we will take to
refer to static objects that constrain movement.

2.1 Trajectories
To record the true movements of objects, we would have to know
their positions at all times, or better, on a continuous basis.
However, current technology only allows us to sample an object's
position, i.e., to obtain the position at discrete instances of time,
such as every few seconds.

A first approach to represent the movements of objects would be to
simply store the position samples. This would mean that we could

not answer queries about the objects' movements at times in-
between sampled positions. Rather, to obtain the entire movement,
we have to interpolate. The simplest approach is to use linear
interpolation, as opposed to other methods such as polynomial
splines [2]. The sampled positions then become the endpoints of
line segments of polylines, and the movement of an object is
represented by an entire polyline in three-dimensional space. In
geometrical terms, the movement of an object is termed a
trajectory (we will use “movement” and “trajectory”
interchangeably). The solid line in Figure 1 represents the
movement of a point object. Space (x- and y-coordinates) and time
are combined to form a single coordinate system. The dashed line
shows the projection of the movement on the two-dimensional
plane [13]. Figure 2 shows the spatiotemporal data space (the cube
in solid lines) and several trajectories (the solid polylines). Time
moves in the upward direction, and the top of the cube is the time
of the most recent position sample. The wavy-dotted lines at the
top symbolize the growth of the cube with time. Interpolating
trajectories raises questions on the uncertainty associated with a
particular representation [13].

Figure 1: A moving point object trajectory

Figure 2: A spatiotemporal space with several trajectories

2.2 Infrastructure
Infrastructure elements obstruct the movements of objects. As we
saw previously, depending on the type of the moving object, what
constitutes infrastructure might change. Figure 3 gives an example
of trajectories affected by infrastructure. The five images represent
temporal snapshots of the trajectories, i.e., slices of a cube such as
the one shown in Figure 2. The data was generated using the
GSTD tool [15].

With respect to indexing, trajectories pose a serious challenge. By
using an R-tree like access method, we approximate the objects to
be indexed. Approximating a line by a Minimum Bounding Box
(MBB) introduces a large amount of so-called “dead space.” This

67

means that even in areas where there are no trajectories, the index
“believes” that there are.

In terms space and where movement can occur, infrastructure
represents “black-out” areas, meaning that there are no trajectories
to index where there are infrastructure elements. However, because
of dead space, those areas are not empty in the index and will incur
unnecessary search in the index as well as produce a certain
number of falsely reported answers, which must subsequently be
eliminated. Both lead to extra I/O operations and thus negatively
affect performance. To eliminate this extra I/O, we can use
infrastructure in a pre-processing step, i.e., why should we look for
objects, where there cannot be any? The strategy we choose is to
query the infrastructure to save on querying the trajectory data.
Overall, this will turn out to be favorable, since the number of
infrastructure elements can be assumed to be very small compared
to the trajectory data. Further, the trajectory data is growing with
time, whereas the size of the infrastructure data remains more or
less constant. In the following, we devise a query processing
strategy to include infrastructure in a pre-processing step.

3. QUERYING MOVING OBJECT DATA
Trajectories and the relevant queries require new query processing
techniques. In previous work, the focus was on the design of new
access methods [16]. In the following, we devise a new query
processing technique, which is based on techniques known from
spatial databases.

3.1 Three-Step Query Processing
In spatial databases, a two-step technique is used to process
queries. Using approximations of the real spatial objects in the
index (minimum bounding rectangles (boxes), MBR (MBB))
requires filtering out false drops from the set of solutions we obtain
after processing a query through the index. In many cases, the real
spatial entities in the database have to be examined to decide
whether they belong in the final result [3].

Section 2.2 states that where there is infrastructure there cannot be
any moving objects. A query window might range over
infrastructure, thus requiring us to query “empty” space. It should
be noted that a query window ranges over two spatial and one
temporal dimension. We use infrastructure only to limit the two
spatial dimensions. The temporal dimension remains unaffected.

We extend the two-step technique to include an additional pre-
processing step, terrmed query window segmentation. We only
want to consider those parts of the query window, QW, not ranging
over infrastructure. The outcome of this step can be either one of
the following three cases. In case (i) the set of segments is empty,
we stop processing the query since it only ranges over

infrastructure. We obtain a set of smaller query windows, qwi, and
processing them is (ii) beneficial, or (iii) is not beneficial, in
comparison to processing the original query window. Beneficial in
this context is defined as a lower number of page accesses needed
to process the query.

The technique for processing spatiotemporal range queries
involving infrastructure thus comprises the following three steps.

1. Segmenting the original query window, QW, into a set of
smaller query windows, qwi.

2. Querying the index depending on the outcome of step 1
to retrieve a candidate set of solutions.

3. Evaluating all objects contained in the candidate set of
solutions.

To efficiently process step 1, we can index the infrastructure
elements by using a spatial access method such as the R-tree.
Furthermore, assuming that the entire infrastructure is known in
advance, we can even bulk load such an index (cf. [5]).

3.2 Query Window Split Algorithms
An essential part of the three-step technique involves the
segmentation of the query window. Before we can devise an
algorithm for this task, we have to establish what is an optimal
query window, i.e., which shapes of query windows should this
segmentation algorithm aim for?

3.2.1 The Ideal Query Window
Kamel and Faloutsos [5] derive a formula to determine the number

of disk accesses needed to process an arbitrary range query iq .

Their formula assumes an R-tree based index, but is independent of
a particular construction method. It is assumed that the centroids of
all query ranges are uniformly distributed over the data space,
which is the unit square. The number of disk accesses, P , for a

query window, iq with extents ixq and iyq in the respective

dimensions, is computed as follows.

 (,) Total Areaix iy ix y iy x ix iyP q q q L q L N q q= + ⋅ + ⋅ + ⋅ ⋅ (1)

In Formula (1), Total Area denotes the sum of all the areas of the

nodes of the tree, and xL and yL are the sums of the x and y

extents of all the nodes in the index.

In our case, the assumption that the data is uniformly distributed
over the whole data space does not hold because of the
infrastructure. Still, if we assume that the data is uniformly

Figure 3: Moving object snapshots and infrastructure

68

distributed in the data space not occupied by infrastructure, we can
use the above formula as a first approximation.

What we can see from Formula (1) is the importance not only of
minimizing the area of the query window, but its perimeter as well.
Having two query windows with the same aerial extent, the one
with the smaller perimeter requires fewer disk accesses. The shape
that minimizes its perimeter for a given area size is the square.
Consequently, what we can derive for the query segmentation
algorithm is that the resulting shapes should resemble a square as
much as possible. Similar results on the shape of a query window
were reported by Pagel et al. [10].

3.2.2 Segmentation Algorithm—the Principle
We proceed to devise a segmentation algorithm for query windows.
The parameters of the algorithm are a query window and a set of
infrastructure elements. The output of the algorithm is a set of
query windows, i.e., rectangles.

The general principle is to decompose a given query window based
on the infrastructure contained in it. The intuition is to “chop” the
parts of the query window not occupied by infrastructure into well-
shaped rectangles, i.e., as square as possible. In Figure 4 where few
but large infrastructure elements are shown as black rectangles, the
possible outcome of such a segmentation process is shown as white
rectangles.

Figure 4: A query window segmentation example

To segment the query window, i.e., to determine the rectangles, the
algorithm proceeds from the lower-left corner of the query window
to the upper-right. Given a seed point, i.e., the lower-left corner,
we try to span a rectangle as far towards the upper right corner as
possible. Consider the situation of Figure 5(a). Here, we want to
span a rectangle from seed point S0 (seed 0) to the upper right
corner. Infrastructure elements 1, 2, and 3 constrain us. As a result,
A and B are the two candidate rectangles for this step.

Seed points are the lower-left corners of all rectangles. Seed points
are determined in two stages. Initially, the algorithm finds all seed
points on the left and lower side of the query window (they would
not be found otherwise). Further, more seed points are found
during the course of the algorithm when new rectangles are
segmented, i.e., the resulting rectangles of the segmentation
process generate new seed points. The algorithm terminates when
all seed points have been considered.

3.2.3 Segmentation Algorithm—a Detailed View
In the following, we give a more detailed description of the
algorithm. The pseudo code of the algorithm can be found in [15].

0,0

1

3

2

S1

S0

S2

A

B

0,0

1

3

2

S1

S3

S2

4

S4

A

(a) (b)

Figure 5: Two steps in the query window segmentation process

Initially, the algorithm determines a first set of seed elements.
Those include (i) the origin of the query window (lower-left
corner), (ii) the upper-left corners of all infrastructure elements
touching with the left side of the query window, and (iii) the lower
right corners of the elements touching the bottom side of the query
window.

To clarify, if an infrastructure element intersects with the query
window, the element’s part outside is truncated for the purpose of
segmenting the query window. Subsequently, the algorithm iterates
over all seed elements, initial ones and newly computed ones, to
compute query window segments.

To determine a valid query window segment, the algorithm tries to
find infrastructure elements that bound a rectangle whose origin is
the current seed point. In the example in Figure 5(a), the algorithm
determines three candidate bounds. Elements 1, 2, and 3 constrain
a rectangle originating from seed point S0. Those constraints leave
us with two possible rectangles, A and B. The algorithm evaluates
both and chooses element B because of better proportions (cf.
Section 3.2.1). The criterion used is the perimeter ratio of the
possible rectangles, i.e., longer side divided by smaller side. For a
square this ratio is 1, for rectangles this ratio is larger. The
rectangle with the smallest ratio is selected.

Having determined the best rectangle, we have to judge whether its
shape is appropriate, i.e., it could be elongated in the x or y
direction. An example check would be that the length in the x-
direction is n times longer than in the y-direction, where n is a
threshold parameter of the algorithm. The outcome of this step can
be that the shape is elongated in the x-direction, in the y-direction,
or the shape is acceptable, i.e., it is reasonably close to a square.

The type of shape determines how to compute the final rectangle
and new seed points. If the rectangle is elongated in the x-
direction, the rectangle is possibly shortened such that it ends with
its upper constraint (element 1 in Figure 6(a)) or an element
constraining the rectangle from below (element 2 in Figure 6(a)).
The algorithm chooses the element that is the most restrictive. In
the example of Figure 6(a) that is element 1. If neither element is
restrictive, i.e., if both elements have larger y-extensions than our
rectangle, the rectangle is left unaltered. A similar approach applies
in case the rectangle is elongated in the y-direction.

The rationale behind this approach is that by disallowing
extensively elongated rectangles, we allow for a possibly better
choice of a rectangle at a later step in the algorithm (cf. Figure
6(a)).

69

As for new seed points, Figure 6(b) illustrates all possible
candidates. Generally, we can encounter six different types of new
seed points:

1. The upper left corner of the newly found rectangle,

2. the lower right corner,

3. meeting point with the upper constraint,

4. meeting point with the right constraint,

5. meeting point with an additional upper bounding element
that was not considered as a constraint, and

6. meeting point with an additional right bounding element.

For cases 5 and 6, since there can be more than one upper (right)
bounding element, the algorithm can also find more than one seed
point in each case.

Remember, seed points are the lower-left corners of future
rectangles, thus they can only be found on the upper side (cases 1,
3, and 5), and on the right side of a newly found rectangle (cases 2,
4, and 6).

1
 3

2

1

2

4

3

1

2

3

4

5
 6

 new
rectangle

(a) (b)

Figure 6: (a) elongated rectangles, and (b) seed points

The algorithm has to check all six alternatives in case of a well-
shaped query window. In case the rectangle was elongated (part 3a
and 3b), we only have to consider cases 1 and 2. The reasons can
be derived from the definition and the three different scenarios and
the definition of the seed point cases.

3.2.4 A Word on Running Time
The running time of the algorithm is determined by the number of
infrastructure elements, I, and the number of query windows, Q,
i.e., the result of the segmentation process. Assuming a uniform
distribution of the infrastructure elements over the data space, Q is
found to be two to three times I. This factor, so far, is only
empirically established.

The main body of the algorithm is a loop over the set of seed

points. The number of seed points, S, equals Q, i.e., for every
created query window, there has to be one seed point. The costliest
operation in this loop is to sort all existing elements (infrastructure
elements plus already created rectangles) once in the x and then in
the y direction for each seed point. Assuming sorting is of cost

logn n , the cost of sorting for the first segmented query window is

I log I , whereas the cost for the last is (Q I 1)log(Q I 1)+ − + − . To
compute the total cost we compute the sum of an arithmetic series.

2 2 2 2

0.5 ((Q I 1) log(Q I 1) I logI)
((Q I 1) log(Q I 1) I logI) =

0.5((Q I 1) log (Q I 1) I log I

⋅ + − ⋅ + − + ⋅ ⋅
+ − ⋅ + − − ⋅

+ − ⋅ + − − ⋅
 (2)

The running time is therefore
2 2

(log)O n n .

3.3 Query Window Segmentation and
Indexing
The second step of the three-step technique uses an index to
process the query. Two access methods for trajectory data are a
modified version of the R-tree and the TB-tree (Trajectory Bundle)
[16]. The TB-tree possesses special capabilities in processing
spatiotemporal query types (cf. [16]). Segments in the TB-tree are
grouped together based on the trajectories they belong to. The R-
tree does not preserve trajectories, but uses purely spatial
characteristics such as proximity. Thus, nodes in the TB-tree are
larger and more wasteful with respect to space. Consequently, such
an index has a higher degree of overlap with respect to
infrastructure. We modify both access methods to allow for the
buffering of retrieved nodes, i.e., pages. We adopt what is known
as the “Least Recently Used (LRU)” approach, where a newly
referenced page replaces the “has-not-been-referenced-for-the-
longest-time” page. This scheme exploits the overlap in page
retrievals caused by simultaneous execution of spatially close
query windows.

To efficiently utilize the LRU buffer, we order the segmented
query windows using a space-filling curve, namely the Hilbert
curve. Basic properties of space-filling curves are: (i) they cover an
“area” completely, where area might also refer to higher
dimensional volumes, (ii) each point in space is visited exactly
once, and (iii) neighbor points in the native space are likely to be
close neighbors on the space-filling curve. Property (iii) is used to
measure the quality of the space-filling curve, i.e., its ability to
preserve proximity. Moon et al. [8] show analytically and
empirically that the Hilbert curve achieves better clustering than
the z ordering and Gray-code curve. Further experiments [4] give
similar results.

The Hilbert curve seen in Figure 7 is constructed in a self-similar
way by using rotation and mirroring. Algorithms for the

Figure 7: Hilbert space filling curves

70

construction of space filling curves can be found on the Web [9]
and in the literature [4].

4. EXPERIMENTAL STUDIES
The goal of the experiments is twofold. First, we try to establish
the conditions under which query window segmentation is useful.
That is to distinguish when case (ii) or (iii) is the best for
processing spatiotemporal range queries. Second, segmenting
query windows might prove to be more or less beneficial for
different access methods. Here, we consider the R-tree and the TB-
tree as mentioned in Section 3.3.

The parameters in our experiments are varying infrastructure
datasets, query windows, and LRU-buffer sizes.

4.1 Varying Query Window Size and Datasets
In the first set of experiments, we compare the cost of querying
trajectories using the original query windows, QW, to using the set
of segmented query windows, qwi, for different query windows
and infrastructure datasets.

Initially, we use an artificial set of infrastructure elements as shown
in Figure 8. The real-world correspondence of this infrastructure
composition could be a city with city blocks. We create trajectories
for 500 moving objects that are uniformly distributed over the
whole data space. A trajectory itself consists of 500 segments,
leading to a total of 250k segments, i.e., the total number of entries
in the index. The size of the LRU buffer is 16 Kbytes, which

corresponds to 16 times the page size of the index, which is 1
Kbyte.

Figure 8 shows a temporal snapshot of the trajectory data used in
the following experiments. The infrastructure elements are shown
as gray rectangles. Again, we use GSTD++ [15] to generate
trajectory data. The parameters are chosen such that the density of
the trajectories is higher towards the center of the data space and
the objects move around their initial positions. Using this data, we
conduct six experiments with a varying query window size.

Figure 8: Trajectory dataset snapshot

The outcome of the experiments is shown in Table 1. For each
query window, we measure the number of node accesses using the
original query window (QW) and the set of segmented query
windows (qwi). For the latter, the number in parenthesis indicates
the LRU buffer hits. The number of query windows that constitute

Table 1: Experimental results: various query window sizes and datasets

Experiment 1 2 3

QW (R/TB-tree) 175 196 123 167 89 141
N 1 1 1
qwi (R/TB-tree) 118(0) 142(0) 100(0) 134(0) 87(0) 122(0)

Visualization

Experiment 4 5 6
QW (R/TB-tree) 319 289 166 172 486 368
N 7 56 7
qwi (R/TB-tree) 319(393) 289(678) 166(1742) 172(4584) 436(400) 321(646)

Visualization

71

qwi is given as N. Assuming the data space is the unit cube, the
temporal extent of the queries shown in Table 1 is 0.2 in the midst
of the temporal range, i.e., from 0.4 to 0.6. We leave the temporal
range constant throughout all of the experiments, since we
observed that varying it only increases/decreases the absolute
number of visited nodes, but not the relative number, i.e., nodes
visit for QW vs. qwi.

We observe that with an increasing query window size, the
advantage of segmentation decreases. Also, it seems that only
infrastructure elements that are on the border of the query window
matter. Experiments 1, 2, and 3 show that although N is the same
in all three cases, because the corners of the infrastructure coincide
with the query window in experiment 1, the gap between using
QW and qwi is larger than in experiments 2 and 3, where the
boundary of QW is inside the infrastructure elements. The larger
the part of the query window boundary that is inside the
infrastructure, the smaller is the advantage of segmentation
(experiments 2 and 3). In experiment 4, we extend QW such that
no infrastructure intersects with the boundary of the query window.
Here, segmentation offers no advantage any more.

In comparing the two access methods, we see that segmentation is
beneficial for the TB-tree in more situations than for the R-tree. In
experiment 3, while segmentation offers virtually no advantage for
the R-tree index (89 vs. 87 node accesses), segmentation for the
TB-tree still proves to be beneficial (141 vs. 122 node accesses).
This can be explained by the properties of the indices as outlined in
Section 3.3, i.e., the TB-tree nodes have more dead space.

Next, we perform experiments with a random infrastructure
scenario. We compute an arbitrary set of rectangles, where the
number as well as the minimum and the maximum extents are input
parameters of the data generator [15]. The parameters of the
trajectory data are, again, 250k segments stemming from 500
moving objects uniformly distributed over the data space.
Experiment 5 in Table 1 shows the experimental outcome. The
infrastructure scenario consists of many (900), but small elements.
Consequently, the segmentation process produces many, small
query windows (56). In this case, choosing qwi over QW offers no
advantages in terms of query processing performance. This shows
that the number and size of infrastructure elements determine the
efficiency of our approach.

4.2 Varying LRU Buffer Sizes
To show the effects of varying LRU buffer sizes, we choose
experiment 6 in Table 1 as a basis. The LRU buffer is used to store
retrieved pages in main memory. Thus, revisiting them does not
require a disk access. Now, in case of segmenting a query window,
the resulting query windows, qwi, are spatially co-located.
Naturally, when executing the queries sequentially, many nodes in
the index will be accessed multiple times. Thus, if reducing the
LRU buffer size, we reduce the advantage of using the segmented
query windows over the original window. Figure 9 shows the
number of page accesses and, conversely, the number of buffer hits
when varying the LRU buffer size from 1 to 16 Kbytes.

We observe that the TB-tree benefits more from using a buffer than
the R-tree. Because of the properties of a TB-tree index, for a set of
queries that are spatially close, it is more likely to access the same
node more often than it is for the corresponding R-tree.
Consequently, the TB-tree benefits more from a larger buffer than
the R-tree does.

0

200

400

600

800

1000

1200

1 2 4 8 16

LRU buffer size [Kbytes]

no
de

 a
cc

es
s/

 b
uf

fe
r

hi
ts

R-tree (node access)
TB-tree (node access)
R-tree (hits)
TB-tree (hits)

Figure 9: Performance study for varying LRU buffer size

4.3 Summary of Experiments
We can identify the following parameters that determine the
effectiveness of query window segmentation. First, the larger the
number of segmented query windows, qwi, the smaller the
advantage over QW. Second, the more space infrastructure
occupies within QW, the better. Third, the more of the
infrastructure that is concentrated at the boundaries of QW, the
better. The experiments show that infrastructure placed at the
center of QW affords query window segmentation less than
infrastructure located at the boundary.

In comparing the R-tree and the TB-tree, we saw that the latter
benefits in more cases from query window segmentation. Further,
it benefits more from a larger LRU buffer than the R-tree. The
reasons here can be found in how the respective access methods
construct the indices.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we present a new query processing technique for
trajectory data stemming from a constrained movement scenario.
We extend the well-known two-step technique from spatial query
processing to include an additional pre-processing step prior to the
filter step. Given an arbitrary spatiotemporal range query, QW, the
aim of this step is to segment QW into a set of smaller query
windows, qwi. We exploit infrastructure information, i.e., spatial
objects that constrain movement, to segment QW. The rationale is
that we “chop” away those parts of QW that range over
infrastructure, i.e., those parts of the data space that do not contain
trajectory data.

We devise an algorithm for segmenting the QW based on
infrastructure. This segmentation can have three outcomes. Query
processing can be (i) stopped after the pre-processing step, i.e.,
QW is totally covered by infrastructure, (ii) QW is segmented into
a set of smaller query windows, qwi, which is used for querying the
trajectory data, or (iii) the original range query is used. Case (i) is
easy to decide. For cases (ii) and (iii), we depend on heuristics that
are based on the outcome of the segmentation process. The results
of the performance studies reported give a first indication for such
heuristics.

Although recent literature includes work on indexing trajectories of
moving objects by maintaining the complete history of object
movement [10] [18] [19], the work presented in this paper is the

72

first (i) to propose a query processing technique tailored towards
trajectory data stemming from objects moving in scenarios
constrained by infrastructure, and (ii) to use a pre-processing step
that is based on data other than approximations of the trajectory
data (infrastructure vs. approximation).

This works points to several directions for future research. Using
the outcome of the segmentation process directly might not be the
most favorable choice. We can extend the segmentation algorithm
to combine various query windows of qwi into larger ones. This
will combine query window segmentation with the simultaneous
execution of query windows [12]. Although we distinguish three
cases as the outcome of the segmentation process, clear heuristics
have to be derived for when to apply each case. Also, the
framework is only empirically validated. Analytical studies should
be used to back up the results. Finally, this work only used
synthetic trajectory and infrastructure data. It would be interesting
to study the performance of this approach using real data sets.

6. ACKNOWLEDGMENTS
This work was supported by the Chorochronos project, funded by
the European Commission DG XII, contract no. ERBFMRX-
CT96-0056, and by a grant from the Nykredit Corporation.

The authors wish to thank Yannis Theodoridis and Nectaria
Tryfona for many rewarding discussions and the anonymous
reviewers for their insightful comments.

7. REFERENCES
[1] Barbará, D.: Mobile Computing and Databases—a Survey.

IEEE Transactions of Knowledge and Data Engineering,
11(1): 108–117, 1999.

[2] Bartels, R., Beatty, J., and Barsky, B.: An Introduction to
Splines for Use in Computer Graphics & Geometric
Modeling. Morgan Kaufmann Publishers, 1987.

[3] Brinkhoff, T., Kriegel, H. P., Schneider, R., and Seeger, B.:
Multi-Step Processing of Spatial Joins. In Proceedings of the
1994 ACM SIGMOD Conference on Management of Data,
pp. 197–208, 1994.

[4] Jagadish, H. V.: Linear Clustering of Objects with Multiple
Attributes. In Proceedings of the 1990 ACM SIGMOD
Conference on Management of Data, pp. 332–342, 1990.

[5] Kamel, I. and Faloutsos, C.: On Packing R-trees. In
Proceedings of the 2nd Conference on Information and
Knowledge Management, pp. 490–499, 1993.

[6] Karppinen, J.: Wireless Multimedia Communications: a Nokia
View. In Proceedings of the Wireless Information Multimedia
Communications Symposium, Aalborg University, 1999.

[7] Leutenegger, S. T. and Lopez, M. A.: The Effect of Buffering
on the Performance of R-Trees. In Proceedings of the 14th

International Conference on Data Engineering, pp. 164–171,
1998.

[8] Moon, B., Jagadish, H.V., Faloutsos, C., and Saltz, J. H.:
Analysis of the Clustering Properties of the Hilbert Space-
Filling Curve, IEEE Transactions on Knowledge and Data
Engineering, to appear, 2000.

[9] Moore, D.: Fast Hilbert Curve Generation, Sorting, and Range
Queries. www.caam.rice.edu/~dougm/twiddle/Hilbert/,
current as of April 12, 2001.

[10] Nascimento, M., Silva, J., and Theodoridis, Y.: Evaluation of
Access Structures For Discretely Moving Points. In
Proceedings of the International Workshop on Spatio-
Temporal Database Management, pp. 171–188, 1999.

[11] Pagel, B. U., Six, H. W., Toben, H., and Widmayer, P.:
Towards an Analysis of Range Query Performance in Spatial
Data Structure. In Processings of the ACM Conference on
Principals of Database Systems, pp. 214–221, 1993.

[12] Papadopoulos, A. and Manolopoulos, Y.: Multiple Range
Query Optimization in Spatial Databases. In Proceedings of
the Second East European Symposium on Advances in
Databases and Information Systems, pp.71–82, 1998.

[13] Pfoser, D. and Jensen, C. S.: Capturing the Uncertainty of
Moving-Object Representations, In Proceedings of the 6th
International Symposium on Spatial Databases, pp. 111–132,
1999.

[14] Pfoser, D. and Jensen, C. S.: Querying the Trajectories of On-
Line Mobile Objects. TimeCenter Technical Report TR-55,
www.cs.auc.dk/TimeCenter, current as of April 12, 2001.

[15] Pfoser, D. and Theodoridis, Y.: Generating Semantics-Based
Trajectories of Moving Objects. In Proceedings of the
International Workshop on Emerging Technologies for Geo-
Based Applications, pp. 59–76, 2000.

[16] Pfoser, D., Jensen, C. S., and Theodoridis, Y.: Novel
Approaches to the Indexing Moving Object Trajectories. In
Proceedings of the 26th International Conference on Very
Large Databases, pp. 395–406, 2000.

[17] Sellis, T.: Multiple-Query Optimization. Transactions of
Database Systems, 13(1): 23–52, 1988.

[18] Tzouramanis, T., Vassilakopoulos, M., and Manolopoulos,
Y.: Overlapping Linear Quadtrees: A Spatio-Temporal Access
Method. In Proceedings of the 6th International Symposium
on Advances in Geographic Information Systems, pp. 1–7,
1998.

[19] Vazirgiannis, M., Theodoridis, Y., and Sellis, T.: Spatio-
Temporal Composition and Indexing for Large Multimedia
Applications. Multimedia Systems, 6(4): 284–298, 1998.

73

