
Modeling, Storing and Mining Moving Object Databases 

Sotiris Brakatsoulas Dieter Pfoser Nectaria Tryfona 

Research Academic Computer Technology Institute 

Athens, Hellas 

{sbrakats|pfoser|tryfona}@cti.gr

Abstract.

Urban areas get more and more congested everyday 

due to the increasing number of moving vehicles. This 
imposes the need for efficient analysis, modeling, and 

processing of traffic data. Moreover, the extraction of 

additional information about traffic conditions, optional 
routes and the possible prediction of troublesome 

situations, such as traffic jams, becomes necessary. In this 

work, we describe the analysis, pre-processing, modeling, 
and storage techniques for trajectory data that constitute 

a Moving Object Database (MOD). MOD is the backbone 
of the (‘PATH-FINDER’ in Greek) system, 

which specifically focuses on extracting further 

information about the movement of vehicles in the Athens 
municipal area. Based on real-world requirements, we 

initially analyse the traffic data and make modeling 

decisions to capture these requirements in a MOD. We 
then design MOD focusing on the spatiotemporal 

concepts, relations and restrictions among the 

characteristic concepts of the system  namely, the 
vehicles, trajectories, and roads. Furthermore, specific, 

innovative pre-processing, design, and storage techniques 
for the trajectory data in MOD are given. Then, we 

present the architecture of ; its core 
components are the characteriser, cluster finder, and 

associator, which are used to perform data extraction in 

MOD. A mining language to accommodate typical data 
extraction queries is presented, in terms of syntax and 

semantics. Answers to characteristic, complex questions 

on MOD, which are based on real-world data about 
traffic in the Athens Metropolitan Area, show the 

applicability of the approach. 

1 Motivation

As the number of moving vehicles increases rapidly 

everyday, the need for analysis, modeling and processing 

of traffic data is vital. Moreover, the extraction of 

additional information about traffic conditions, optional 

routes and possible prediction of troublesome situations, 

such as traffic jams, becomes necessary.  

In this work, we deal with the analysis, pre-

processing, modeling and storage techniques of traffic 

data in a Moving Object Database (MOD) for a traffic 

management system. Furthermore, we apply data 

extraction techniques in MOD, assisting the prediction of 

difficult situations, or optional cases, such as alternative 

routes when traffic is congested.  

In order to realize MOD, based on real-world 

requirements about traffic in the Athens Metropolitan 

Area, we analyse the fundamental concept of the 

movement of a vehicle and register its semantics and 

properties in terms of a conceptual model. We organize 

them in a database, including vehicles, routes, trajectories 

(i.e., traces left behind as vehicles move), and relations 

among them.  

Building a MOD is not a trivial issue. It consists of (i) 

spatial data, (i) non-spatial data and (iii) trajectories. 

Spatial data comprises infrastructure information such as 

roads, buildings, obstructions, etc. and the non-spatial 

data consists of other thematic information. Both data 

scenarios are well-explored research subjects and various 

commercial DBMS products exist that allow for their 

efficient manipulation. Trajectory data on the other hand 

is a rather new field of research and no commercial 

products are available to manage it. Handling trajectories 

includes (i) the pre-processing of the data, i.e., dealing 

with errors in positional measurements, (ii) data 

modeling, i.e., defining a conceptual data model that 

meets systems requirements and (iii) data storage, i.e., the 

logical data model, data types, and query processing 

issues. In this work, we outline these problems and 

present approaches for addressing them. 

Furthermore, for a MOD to be useful, it is not only 

enough to register current information but also to extract 

further knowledge from it. In our case, MOD is the 

backbone of the  system [9], which focuses 

on extracting further information about the movement of 

vehicles in the Athens municipal area.  The core of the 

 system are the characteriser, cluster finder 
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and associator components that are built on top of MOD. 

In order to realize these components, we adapt known 

data extraction functions that exist in literature, namely, 

characterization, clustering and association, to the needs 

of moving object data. We build a Spatial Mining 

Language to support these functions, in terms of syntax 

and semantics, and we show how typical, complex data 

extraction queries are accommodated with the support of 

the underlying model.  

This work is part of a larger research project focusing 

on the development of methods and techniques to build a 

traffic management system, namely I , based 

on real-world data from the Athens Metropolitan Area. In 

this paper, we present the preliminary results of this 

effort. The contribution is twofold: (i) the registration of 

the semantics of moving object data in an object-oriented 

way, resulting in a MOD, and (ii) the adaptation of the 

well-known and widely-used mining functions of 

characterization, clustering, and association in the moving 

object application domain and their typical expression 

through the Spatial Mining Language (SML), allowing 

their formal application in MOD. 

Related work in this area includes mainly commercial 

tools focusing either on the spatial data mining area, such 

as the XpertRuleMiner [25], Conquest [26], and 

GeoMiner [27] [8], or on the traffic/fleet management, 

such as the E-track [21], Diplomat [22], VFL[23], and 

Accu-Tracker [24]. The traffic/fleet management 

applications are focused on the management of current 

movement information and do not include an analysis 

component for historic data. The area of data mining for 

traffic data has focused on building data warehouses and 

algorithms to visualize the huge amounts of traffic count 

data stored in traffic and transportation databases [17] 

[18] [19]. These data is different from the trajectory 

approach pursued in this work since movement is 

representing as volume data for discrete spatial locations. 

Further, various approaches to store and query trajectory 

data have been proposed in literature, e.g., [11] [14] [20]. 

However their distinct and decisive disadvantage is that 

they cannot easily be implemented in practice, i.e., by 

using and extending off-the-shelf DBMSes to manage the 

data. We are not aware of any work trying to model at a 

high level the semantics of traffic data and movement. 

Previous work includes [12] [13] [15] and [16], focusing 

independently on the movement and the spatial mining 

process respectively.  

The rest of the paper is organized as follows. Section 

2 gives the organization of the database of the 

I  system. Section 3 deals with important 

pre-processing, modeling and storage issues related to 

trajectory data in MOD. Section 4 presents the 

architecture and components of I . The 

mining component, performing the data extraction 

process has a core role. Section 5 analyses the mining 

process in the traffic management system and presents the 

spatial mining language; its syntax and semantics. 

Characteristic queries show the applicability of the 

approach. Finally, Section 6 this work.  

2 Organizing the Moving Object Database   

In order to realize and organize a traffic management 

system, it is essential to understand and study the moving 

objects, their properties and relations, as well as the 

fundamental concept of movement of objects, which is 

basic in all application domains whether they deal with 

moving vehicle or with users carrying a mobile phone. 

After defining the semantics involved in objects 

movement and the concepts that need to be captured, we 

organize them in a database, the Moving Object Database 

(MOD). MOD is the core of the traffic management 

system. Later on, pre-processing methods, storage 

techniques and data extraction functions will be 

performed on this database.  

2.1 The Semantics of Movement 

Consider a scenario using a traffic management 

system to monitor the traffic flow in the city of Athens, 

Greece. By monitoring the movement of specific vehicles 

(e.g., delivery trucks, public transport, taxis, etc.) one can 

ask the following queries: ‘find the vehicles that just 

entered Athens’, or ‘find the vehicles that left Athens an 

hour ago,’ or more general ‘find locations with a larger 

number of vehicles’ (i.e., typical traffic jam pre-

condition). Representing such moving objects as point 

objects (their volume or size does not play a critical role) 

their movement can be illustrated as shown in Figure 1. 

The solid line in Figure 1(a) represents the movement of a 

point object. Space (x- and y-axes) and time (t-axis) are 

combined to form a 3D-area. The dashed line shows the 

projection of the movement in two-dimensional space (x 

and y coordinates).  

In order to record the movement of a vehicle, we need 

its position on a continuous basis. However, GPS and 

telecommunications technologies only allow us to sample 

an object's position, i.e., to obtain the position at discrete 

instances of time such as every few seconds. By, later on, 

interpolating these samples, we can extract the movement 

of the object. The simplest approach is to use linear 

interpolation, as opposed to other methods such as 

polynomial splines [1]. The sampled positions then 

become the end points of line segments of polylines, and 

the movement of an object is represented by an entire 

polyline in three-dimensional space. In geometrical terms, 

the movement of an object is termed a trajectory; in other 

words, trajectory is the trace of the vehicle in time.

Figure 1(b) shows a spatiotemporal space (the cube in 

solid lines) and several trajectories (the solid lines) 

contained in it. Time moves in the upward direction, and 

the top of the cube is the time of the most recent position 
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Figure 2: Relationships: (a) trajectory/spatial
environment and (b) trajectory/trajectory

sample. The wavy-dotted lines on top symbolize the

growth of the cube with time.

The trajectory representation is adequate to derive

certain properties and relationships of the object

movement.

Properties

Trajectories are characterized by a set of different

properties depending on the application requirements. The

most common properties are: (a) the speed of the

movement (b) the heading, showing the direction of the

vehicle, (c) the covered area, indicating the area the

vehicle covered during its trip, (d) the traveled distance,

and (e) the traveled time. Based on our studies [11] [12],

the aforementioned representation is adequate for mobile

database modeling since it gives answers to simple

questions such as ‘which area did vehicle A-4592 cover

during its trip?’ and to more complex ones, like ‘which

vehicles left Athens after midnight moving East and were

found close to each other 2 hours later?’.

Relationships

Through their movement, trajectories relate to their

environment in different ways over time. In the following,

we discuss to types of relationships, namely how a 

trajectory can relate to its (spatial) environment and to 

other trajectories.

Relations between a trajectory and its spatial
environment. Trajectories can have relations with other

spatial objects. This can be infrastructure elements, such

as roads, parks, buildings, etc. but also imaginary entities,

such as city boundaries or query regions. In the temporal

context these spatial entities become three-dimensional

(i.e., space and time dimensions) represented by e.g. a 3D 

region. We distinguish the five basic relationships stay
within, bypass, leave, enter, cross (cf. Figure 2(a)), but

others can also be included.

(a)

(b)

Figure 1: Moving point objects: (a) a 
trajectory and (b) several trajectories 

evolving in a finite region

Relations among trajectories: Additionally, relevant

positions among trajectories need to be registered at time

points. The most common ones based on topological

reasoning [4] are the following (Figure 2(b) depicts four

of them): intersect, meet, equal, near, and far.

2.2 The Database Schema of MOD 

The various concepts relating to trajectories presented

in the previous section need to be organized to define the

underlying data model of MOD. We initially use

conceptual modeling to capture the semantics of the

aforementioned concepts in an organized manner. For the

conceptual representation, we use the class diagram of 

UML [2] due it is popularity, high-degree of

comprehension and expressiveness.

Figure 3 illustrates the conceptual schema of MOD.

To capture a ‘trajectory’, we need an identification of the

mobile device (indicated by ‘object id’), the actual 

trajectory (‘trajectory id’) as well as the position of the

trajectory itself. In other words, ‘position’ describes the

trace of the moving vehicle. The data types used are

abstract, since they only should indicate the

dimensionality of the parameter. More concrete instances

of data types can be found in, e.g., [7]. A set of
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trajectory

trajectory id: integer

location: spatial

position: spatial

trajectory

trajectory id: integer

vehicle id: integer

position: spatiotemporal

GetPosition(temporal): spatial

GetSpeed(spatiotemporal):

integer

GetTime(spatial): temporal

TravelledDist(spatiotemporal):

integer

GetHeading(spatiotemporal):

integer

trajectory

trajectory id: integer

location: spatial

position: spatial

3D-region

region id: integer

name: string

time: temporal

position: spatiotemporal

GetPosition(): spatial

0...* 1...*has

has

0...*
0...*

trajectory

trajectory id: integer

location: spatial

position: spatial

vehicle

vehicle id: integer

has

1

trajectory

trajectory id: integer

location: spatial

position: spatial

road

road id: integer

position: spatial

trajectory

trajectory id: integer

location: spatial

position: spatial

road_segment

road_s id: integer

position: spatial

is on

10...*

1...*

1

follows

1...*

1...*

has

trajectory id: integer

location: spatial

position: spatial

trajectory/trajectory

position: spatiotemporal

Intersect(): spatiotemporal

Intersect(spatiotemporal): spatiotemporal

Meet():spatiotemporal

Meet(spatiotemporal):spatiotemporal

Equal(): spatiotemporal

Equal(spatiotemporal): boolean

Far(): spatiotemporal

Far(spatiotemporal): boolean

trajectory

trajectory id: integer

location: spatial

position: spatial

spatial relation

location: spatial

time: temporal

Stayswithin(): spatial

Bypass(): spatial

Leave(): spatial

Enter(): spatial

Cross(): spatial

trajectory

trajectory id: integer

location: spatial

position: spatial

trajectory/environment

position: spatiotemporal

OR

time: temporal

Stayswithin(): temporal

Stayswithin(temporal): boolean

Bypass(): temporal

Bypass(temporal): boolean

Leave(): spatiotemporal

Leave(temporal): spatiotemporal

Enter(): spatiotemporal

Enter(temporal): spatiotemporal

Cross(): spatiotemporal

Cross(temporal): spatiotemporal

follows

0...*

Figure 3: An excerpt of the database schema of MOD

operations, e.g., GetSpeed(spatiotemporal),

GetTime(spatial), and TravelledDistance(spatiotemporal),

GetHeading(spatiotemporal) are prototypical and show 

what type of information can be derived from the

trajectory data, e.g., to compute the traveled distance or

the heading of a trajectory, we apply an operation that

uses a spatiotemporal range as a parameter.

The ‘3D-region’ class is prototypical to denote the

spatial environment of the trajectory; in this case it shows

the total covered area.

Trajectories ‘have’ (one or more) relations either

with other trajectories, or their 3D-region class. Figure 3

contains the respective functions to compute such 

relationships. E.g., ‘Leave’ without parameter computes

the spatiotemporal positions at which a trajectory left a 

given instance of a 3D-region class. To restrict the

operation, we can use an argument to the function. In the

case of Leave it is a temporal argument, i.e., the search

for spatiotemporal positions at which the trajectory has

left the region is restricted to a given time interval. In the

class ‘trajectory/environment’ the parameter ‘position’ or

‘time’ capture the result of the function. Equally, so does

‘position’ in relation ‘trajectory/trajectory’.

The rationale and choices presented here have the

main advantage of describing two basic concepts: (a) the

trajectory of the moving object by keeping track of its

movement, and (b) the moving object itself, by recording

its last known position. The spatiotemporal framework in 

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04) 

1098-8068/04 $20.00 © 2004 IEEE 



which the movement takes place can either be built on the

fly (i.e., while the objects move) or be pre-defined (e.g.,

Athens in a specific time interval).

3 Managing Trajectory Data 

After having modeled MOD, it is essential to 

represent and manage the trajectory data. As illustrated in

Figure 3, the core components of MOD are the trajectory,

and spatial and non-spatial data. Spatial and non-spatial

data are well-explored research subjects and various

commercial DBMS products exist that provide this

functionality. Approaches for trajectory data on the other

hand are rare and no commercial products are available to

manage this kind of data. However, storing these data is

just but one of the many issues related to managing

trajectories. Thus, in the following, we outline the

problems and detail various solutions relating to (i) pre-

processing, (ii) modeling, and (iii) storing these data.

3.1 Map Matching

Trajectory data is obtained by sampling the

movement, i.e., by taking positional measurements of the

movement at discrete points in time. In traffic

management applications, typically GPS is used for this

purpose. A positional measurement with GPS is not

precise but has an error associated. Although as the

technology gets more and more mature the error decreases

in size, at current a measurement error of 15 meters is 

rather common without the use of additional technology

such as differential GPS or WAAS (Wide Area

Augmentation System). Because of this error, mapping

the position of a vehicle onto a road network is not a 

trivial task, especially if one has to map a trajectory that

consists of not only imprecise but also sparse positional

measurements.

Figure 4: The road network of Athens, Greece 
(~150k edges)

The technique to map positional measurements onto a

map, specifically a road network, is commonly referred to

as map matching. For this work, we developed an

algorithm tailored to the tracking data that was available

to us. In our case, the dataset consists of ca. 26000

trajectories that in turn consist of 11 million segments.

The data was collected through GPS vehicle tracking in

the municipal area of Athens through the years 2000 to

2003. The sampling rate was 30 seconds, i.e., a positional

measurement of the movement was taken every 30

seconds. Our map matching algorithm mapped these

trajectory data onto a vector road map of the metropolitan

area of Athens, Greece. The road network consists of

roughly 150 000 edges and extents over an area of 40 x 40

km. Figure 4 shows the Athens road network with some

heavily traversed roads indicated in black and dark gray.

Having created the data, one needs to store it. In the

following section, we discuss a data model for trajectory

data that is based on the data produced by the map

matching algorithm.

3.2 A Data Model for Trajectory Data 

The map matching algorithm allows us to map the

trajectories onto a road network. Essentially, the road

network captures the spatial aspect of the trajectories. By 

exploiting this aspect one can store trajectories more

efficiently than by using a “raw” 3D representation. The

conceptual schema shown in Figure 5 illustrates the

approach of capturing and, later on, storing trajectory data

by means of an underlying movement network. It

comprises three main components relating to the (i)

vehicle information, (ii) trajectories, and (iii) network. In 

the following, the respective names of entities,

relationships, and attributes are indicated in parenthesis.

The spatial aspect of the trajectories is modeled in terms

of the network, which consists of edges (EDGE) and

nodes (NODE). Each edge has a ‘from node’ (FROM

NODE) and a ‘to node’ (TO NODE). Additionally, we

capture the incident edges of nodes (HAS EDGES). The

geometry of a node is a two-dimensional point. The

trajectories (TRAJECTORY) are related to the network

edges in that a trajectory consists of segments

(SEGMENT), which in turn relate to (RELATE TO)

network edges. Network edges in conjunction with nodes

define the spatial extent of the road network and thus the

spatial aspect of the trajectories. The temporal aspect of 

the trajectory is captured by assigning two timestamps
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(time1 and time2) to the segment entity, indicating the

start and end times. 

Besides the trajectory data, also vehicle information

relating to the moving object that “produced” the

trajectory is captured. This information becomes useful in 

subsequent data processing (e.g., routes heavily

frequented by delivery trucks).

We should point out that Figure 3 illustrates an

excerpt of the database schema of MOD, while Figure 5

depicts the schema for designing and further

implementing just the trajectory data. The dotted lines

lead to comments.

3.3 Trajectory Data Storage 

Using the conceptual schema of the previous section, 

we store the trajectory in a set of tables using specifically

an Oracle DBMS version 9i. We took advantage of the

Oracle Spatial functionality by using spatial data types.

Our logical schema is defined in terms of four tables.

The table NW_TRAJECTORY(trajectory_id,

edge_id, time1, time2) records trajectory segments, with

the trajectory referenced by its respective id. Each

segment represents a unique street edge traversal. Further,

we record the id of the street edge the trajectory passes

through, the time it enters the edge and the time it leaves

the edge. Relating to the conceptual schema of Figure 5, 

entities TRAJECTORY and SEGMENT are collapsed

into this relation. For storing the road network, we use the

following three relations.

NODE(node_id, 2D-point) represents the spatial

aspect of the street network. Each tuple represents a street

node (a junction). The attribute 2D-point is of a geometric

point type. The attribute node_id uniquely identifies a 

node.

SEGMENTNW_TRAJECTORY
CONSISTS

OF

1 N

traversal direction

time1 time2

EDGENODE

RELATES

TO

1

N
FROM

NODE

HAS

EDGES

1
N

NM

trajectory_id

VEHICLE

OF

1

N

VEHICLE_TYPETYPE

1N

Vehicle

information

Trajectory

Network
node_id 2D-point

TO

NODE

edge_id

1 N

Figure 5: A schema for trajectories in MOD

EDGE_NODES(edge_id, node_id1, node_id2)

allows us to identify the start/end nodes of each network 

edge.

NODE_EDGES(node_id, edge_id) identifies for 

each node the incident edges.

To facilitate query processing, we use various indexes.

A spatial index is used for the network nodes, a composite

B-tree index is used on the edge_id, time1, time2

attributes (NW_TRAJECTORY relation), and on the

node_id and edge_id attributes (NODE_EDGES relation).

A B-tree index is also created for the node_id attribute

(NODE_EDGES relation). Querying the trajectory data

typically involves all four relations.

Table 1 summarizes the size of the various relations

that are needed to store the 26000 trajectories. In an

experimental evaluation of this approach, we also created 

tables to store the 3D trajectory segments including the

creation of a 3D R-tree index. The storage requirement for 

this approach (for the same trajectory data) was 4.6 GB,

thus almost five times as high as for the network

approach. This difference is due to the elimination of

redundancy in the trajectory data by storing its spatial

properties separately in the network.

4 The Architecture of the IXNH

System

After having designed a MOD and captured trajectory

data in it, we present the architecture of the

 traffic management system. MOD is its 

backbone and it contains trajectory data, other spatial

data, such as maps or building blocks, and non-spatial

data, such as thematic attributes, texts and pictures.

The goal of the system is (a) to tackle efficiently

issues related to trajectory data, such as preprocessing,

modeling and storage and (b) to act as a mining tool for

further knowledge and data extraction and thus to help in

Table 1: Trajectory data storage occupation

Network Schema

Table or Index Size (MB) 

NW_TRAJECTORY 476.41

NW_TRAJECTORY_INDEX 480.2

NODE 5.95

NODE_INDEX 12.53

NODE_EDGES 6.12

NODE_EDGES_INDEX 9.22

EDGE_NODES 5.9

EDGE_NODES_INDEX 3.4

Total 999.73
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decision making by assisting on the prediction of 

troublesome traffic situation. 

Based on literature [28] [5] [6], for a system like 

, to perform the mining process, it is 

essential to support:  (i) feature/data extraction, which 

focuses on obtaining only the interesting attributes or 

relations of the data in the database. A typical example of 

this case is the query: ‘find all the equivalent routes, in 

terms or travel time’ or ‘find all current trajectories going 

west’, and (ii) pattern extraction and discovery, which 

extracts further knowledge about the current situation, 

based on patterns [28]. For example, ‘find the traffic load 

between 7.00 am-10.00am during the weekdays, and the 

weekends’. 

In our design, according to this, we include the two 

components of data extraction and pattern extraction. In 

this work, we developed, until now, the feature/data 

extraction component. The data extraction component 

further includes the modules of trajectory characterizer,

trajectory cluster finder and trajectory associator, while 

the trajectory patter finder is responsible for pattern 

extraction and discovery.  

Each component is realized through a mining 

function, namely, characterization, clustering, association 

and pattern (Section 5.1), which allow for the appropriate 

data acquisition. Finally, these mining functions are 

expressed through the Spatial Mining Language, which 

captures the semantics of the mining functions in a 

syntactic way (Section 5.2). Figure 6 depicts the 

architecture of the I  system. 

5 Mining MOD 

In this section we present the application of data 

extraction – as part of the mining process – on MOD, in 

order to extract further knowledge. By using the concepts 

of the underlying model of Figures 3 and 5, the data 

extraction is possible. We first give an informal definition 

of the data extraction functions and then we give their 

syntactic and semantic definition.  

It is important to point out that in this paper we are 

concerned only with those data extraction (or mining) 

functions that gain special meaning and importance when 

combined with positional data; for this, we chose to work 

with the more basic and widely-used functions. The 

pattern finder function, corresponding to the pattern 

extraction component of Figure 6, is a whole research 

effort of its own, and is not presented in this paper.   

5.1 Mining Functions

The role of data mining functions is to query already 

existing information in order to extract further knowledge 

and reveal behavioural patterns and trends that are useful 

in the decision making process. This is usually 

accomplished by examining data from different 

perspectives and combining them. In this section we 

present three fundamental, widely used, data extraction 

functions [4] [7] [5], namely characterization, clustering,

and association.  In literature, many more mining function 

proposals do exist. Some of them overlap semantically, 

for example classification, and characterization, or appear 

with different names, such as summarization instead of 

generalization, while others depend exclusively on the 

application domain such as dependency analysis (i.e., to 

describe the value of some characteristics based on the 

value of another characteristic) or deviation detection for 

business-oriented environments. However, some of the 

functions appear to be fundamental for the mining process 

as they are based in common-sense techniques for further 

information extraction. The presented approach is open to 

any extension about including other mining functions.  

To avoid any confusion, we give the definition of the 

three well-visited mining operations: 

Characterization is the task of assigning a new 

attribute to a class based on some attribute values. For 

example, for further analysis, all trajectories moving west 

from the center of the city show the vehicles (and thus the 

traffic load) leading to the ‘west-suburban areas’.  

Clustering creates a new object class based on the 

values of some attributes. Clustering can be based on 

spatial information, e.g., ‘all trajectories heading west’ or 

non-spatial information, e.g., ‘all vehicles with the 

travelled distance of 20Km between [10-10.30], towards 

the same direction, are clustered as ‘equivalent_routes’’.  

It becomes obvious that the distinction between 

clustering and characterization is really thin, as it is also 

apparent by the confusion of these terms in literature. 

Generally speaking, it is a matter of a design decision 

whether we choose to create a new cluster or a new 

attribute, depending on the size of the result data we are 

dealing with as well as the semantics and emphasis we 

want to add to our MOD.  

Association of data. This indicates a relationship 

between object classes, or in other words, the presence of 

one pattern identifies another pattern. For example, ‘the 

relationship between ‘vehicle position’ at a certain time 

point.’ More specifically, finding ‘all vehicles coming 

close to each other ‘now’’, gives a good prediction for a 

possible traffic jam. 

5.2 The Spatial Mining Language (SML) of the 

 system 

After having designed MOD for the traffic 

management system, and discussed the three most-used 

mining functions, we proceed by applying them to the 

traffic management system context by means of a mining 

language. The mining functions have the generic syntax: 

MINE mining function 

ON/AMONG object class(-es) 

AS composite spatial constraint
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Figure 6: The architecture of the IXNH  system

where mining function is one of the 3 fundamental

ones, performed on MOD object classes and composite
spatial constraint is an expression built of the basic

spatial constraints  (i.e., relations among trajectories and 

among trajectories and 3D environments (c.f. Section

2.1)) using conjunction and disjunction.

Next, we present the formal syntax of the Spatial 

(data) Mining Language (SML) together with its 

semantics. SML allows for the definition of 

characterization, clustering and association, together with

spatial constraints; SML is open to extensions to

accommodate more mining functions. One can argue that

the language can also be used to mine conventional

databases and quite understandable so, since the concept

of space in captured only in the spatial constraints

participating in the AS clause.

Upper case words denote reserved words. Lower case

words denote variables, standing for arbitrary names.

Words in lower case with capitalized initial denote the

value of the variable, e.g., attr stands for attribute name,

while Attr stands for its value. Clauses in < > are optional

arguments; in (,...) are repeatable; in { ... | ... } are

alternatives (one of); in ( ) indicate grouping of

arguments.

Characterization adds a new attribute to an object

class, based on the values of other attributes.

MINE CHARACTERIZATION new_attr_name 
ON {object class}
AS {f(obj_class_attrij,…)}

where i,j are integers, and 1  i  (number of object

classes), thus obj_class_attri
j indicates the j-th attribute of

the i-th class. f is a function indicating the composite

spatial constraint.

Clustering creates a new object class, based on

conditions on attribute values of another class.

MINE CLUSTERING {new_obj_class}
ON {obj_classi}
AS {f(obj_class_attrij,…)}

where i, j integers and 1  i  (number of classes), and

obj_class_attri
j, is the j-th attribute of the i-th object class. 

The ON clause indicates object class out of which the new

class is created.

When CLUSTERING is performed in space we define

the result as the geometric union of the position.

Association relates object classes, based on attribute 

values.
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MINE ASSOCIATION 
AMONG  (obj_classy,obj_classz,…)
AS f(attrmn,…)

where m, n, y, z are integers, obj_classy, obj_classz are

object classes and attrm
n, with 1  m  (number of object

classes), is the n-th attribute of the m-th class.

5.3 Data Extraction about Traffic

We show examples of its applicability using real-

world queries concerning traffic in the area of Athens,

Greece.  The functions are applied in the MOD of

 traffic system and thus, refer to the object

classes, relations, attributes and operations illustrated in

the database schema of Figure 3. 

Query 1:  Find all vehicles with a travelled distance

of 15 to 20 km from the center of Athens towards South,
between 10:00 to10:30 and cluster them as

‘equivalent_routes’.

By knowing the equivalent routes in terms of travel

time, the system can provide us with alternatives in case 

of a traffic jam or other troublesome situation in one of

these routes.

MINE CLUSTERING ‘equivalent_routes’ 
ON trajectory
AS (15 km < distance(GetPosition(10:00) – 
GetPosition(10:30)) < 20 km) and (170 < 

GetHeading(spatial extent: center 20km,
temporal extent: 10:00 – 10:30) <  190 
(degrees))

The travelled distance is computed as the Euclidean

distance between the position of the moving object at

10:00 and 10:30, respectively. The ‘South” direction is

determined by the trajectory having a heading between

170 and 190 degrees. The GetHeading function is 

constrained by a spatiotemporal range constrained by a 20

km from the center (actually up to 2*20 since we use a

box and not a circle to approximate this range) and the

temporal constraint from 10:00 to 10:30 (cf. Figure 7).

Figure 7: Spatiotemporal range: spatial extent:

center 20km, temporal extent: 10:00 – 10:30 

Query 2: Find the relative positions of all vehicles

that left Athens at 10.00 pm.

The information implies the traffic in the specific

routes the vehicles followed.

MINE ASSOCIATION vehicles that left Athens 1 
hour ago 
AMONG 3D-region trajectory 
trajectory/environment

AS (region.name=‘Athens’) 
(trajectory/environment. trajectory-
id=trajectory.trajectory-id)

 (3D-region. region-

id=trajectory/environment.region-id)
(leave(10.00pm) intersect 3D-region.position) 

The intersect operation corresponds to the intersect

spatial relation of [4] and is used to indicate all the routes

that left the Athens area at 10.00 (cf. Section 2.2).

Query 3: Find all vehicles heading ‘northeast’ from
the center and classify them as ‘going_to_Kiffisia’.

This is a characteristic query to extract traffic load in

traffic management systems.

MINE CHARACTERIZATION ‘going to kifissia’ 
ON trajectory

AS (40 < GetHeading(spatial extent: center 
2km, temporal extent: ‘now - 5min’ – ‘now’) <
60 (degrees)) 

The ‘Northeast’ direction is determined by the

trajectory having a heading between 40 and 60 degrees.

The GetHeading function is constrained by a 

spatiotemporal range constrained by a 2 km from the

center (representing the ‘center’ area) and the temporal

constraint from up to 5 minutes ago until now.

6 Conclusions

In order to realize and organize a traffic management

system, named , it is essential to understand

and study the objects, their properties and relations, as 

well as the fundamental concept of movement, which is

basic in all application domains dealing with moving

vehicles. We, initially, define the semantics involved in

objects movement and concepts that need to be captured,

we organize them in a database, the Moving Object

Database (MOD). Next, we focus on pre-processing

methods, and storage techniques for the trajectory data.

We used a network-based representation of trajectories

that was obtained by applying map-matching techniques.

The trajectory data was stored by means of an off-the-

shelf DBMS. Then, we define the architecture of the

 system. In order for  to

perform the mining process, it is essential to firstly

support feature/data extraction, which focuses on

obtaining only the interesting attributes of the data in the

database. The data extraction component includes the

modules of trajectory characterizer, trajectory cluster
finder and trajectory associator, which are expressed

through the Spatial Mining Language.

20

10

10

ce

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04) 

1098-8068/04 $20.00 © 2004 IEEE 



Acknowledgements 

Supported by DB-Globe: A Data-centric Approach to 

Global Computing (IST-2001-32645), and IXNH :
A Traffic Management System (Hellenic General 

Secretariat of Research and Technology).  

References 

[1] Bartels, R.H., Beatty, J.C., and Barsky, B.A., 1987. 

An Introduction to Splines for Use in Computer 

Graphics & Geometric Modeling. Morgan 

Kaufmann Publishers, Inc.  

[2] Booch, G., Rumbaugh, J., and Cobson, I., 1999. The 

Unified Modeling Language User Guide. Addison-

Wesley.  

[3] Clifford, J., Dyreson, C.E., Isakowitz, T., Jensen, 

C.S., and Snodgrass, R.T., 1997. On the Semantics 

of ``Now'' in Databases. ACM Trans. Database Syst. 

22(2): 171-214  

[4] Egenhofer, M.J., 1991. Reasoning about Binary 

Topological Relations. SSD 1991: 143-160 

[5] Ester M., Kriegel H.-P., Sander J., 1999.  

‘Knowledge Discovery in Spatial Databases’, 

LNCS, Vol. 1701, 1999, pp. 61-74. 

[6] Goebel, M., and Gruenwald, L.: A Survey of Data 

Mining and Knowledge Discovery Software Tools. 

ACM SIGKDD. June (1999).  

[7] Güting, R., Böhlen, M., Erwig, M., Jensen, C. S., 

Lorentzos, N., Schneider, M., and Vazirgiannis, M.: 

A Foundation for Representing and Querying 

Moving Objects. ACM Transactions on Database 

Systems 25(1), pp. 1-42, 2000. 

[8] Han, J., Koperski, K., and Stefanovic, N., 1997. 

GeoMiner: A System Prototype for Spatial Data 

Mining. ACM-SIGMOD, Tucson, Arizona.  

[9] . A Traffic Management System, 

2002-2004. General Secretariat of Research and 

Development, Hellas. 

[10] Pfoser, D., 2000. Issues in the Management of 

Moving Point Objects. PhD Dissertation, Aalborg 

University.  

[11] Pfoser, D., Jensen, C.J., and Theodoridis, Y., 2000. 

‘Novel Approaches in Query processing for Moving 

Objects’. VLDB, Cairo, Egypt, Sept. 2000. 

[12] Pfoser, D., and Theodoridis, Y., 2000. Generating 

Semantics-Based Trajectories of Moving Objects. 

International Workshop on Emerging Technologies 

for Geo-Based Applications, Ascona, Switzerland. 

[13] Pitoura, E., Abiteboul, A., Pfoser, D., Samaras, G., 

and Vazirgiannis, M., 2003: DBGlobe: a service-

oriented P2P system for global computing. 

SIGMOD Record 32(3): 77-82.  

[14] Prasad Chakka, V., Adam Everspaugh, A., and 

Patel, J.M., 2003. Indexing Large Trajectory Data 

Sets With SETI. CIDR 2003, 1st  Biennial Conf. on 

Innovative Data Systems Research, Asilomar, CA, 

USA, January 5-8, 2003, Online Proceedings. 

[15] Tryfona, N., 2000. A Framework for Constraint-

based Spatial Data Mining. Nectaria Tryfona. 

International Workshop on Emerging Technologies 

for Geo-Based Applications, Ascona, Switzerland. 

[16] Tryfona, N., and Pfoser, D., 2001. Designing 

Ontologies for Moving Objects Applications. 

Nectaria Tryfona and Dieter Pfoser. nternational 

Workshop on Complex Reasoning on Geographic 

Data. Paphos, Cyprus.  

[17] Shekhar, S., Lu, C.T., Tan, X., Chawla, S., 2001. 

Map Cube: A Visualization Tool for Spatial Data 

Warehouses, as Chapter of Geographic Data Mining 

and Knowledge Discovery. Harvey J. Miller and 

Jiawei Han (eds.), Taylor and Francis, 2001. 

[18] Shekhar, S., Lu, C.T., Zhang, P., and Liu, R., 2002. 

Data Mining for Selective Visualization of Large 

Spatial Datasets, 14th IEEE ICTAI, Nov. 2002.  

[19] Shekhar, S., Lu, C.T., Chawla, S., and Zhang, P., 

2001. Data Mining and Visualization of Twin-Cities 

Traffic Data, Dept. of Computer Science Technical 

Report TR 01-015, U. of Minnesota, 2001. 

[20] Tao Y., and Papadias, D., 2001. MV3R-Tree: A 

Spatio-Temporal Access Method for Timestamp and 

Interval Queries. VLDB. pp. 431-440. 

[21] E-track, www.etrackfleet.com. As of January, 2004. 

[22] Diplomat, www.dcs.com. As of January, 2004. 

[23] VFL, www.onlinedata.gr. As of January, 2004. 

[24] AccuTracker, http://universaltracking.com/. As of 

January, 2004. 

[25] XpertRule Miner,  http://www.attar.com/. As of 

January, 2004. 

[26] Conquest, 

http://dml.cs.ucla.edu/projects/oasis/Conquest/conqu

est.html. As of January, 2004. 

[27] GeoMiner, http://db.cs.sfu.ca/GeoMiner/. As of 

January, 2004. 

[28] Ullman, J., Data Mining Lecture Notes, http://www-

db.stanford.edu/~ullman/mining/mining.html. As of 

January 2004. 

Proceedings of the International Database Engineering and Applications Symposium (IDEAS’04) 

1098-8068/04 $20.00 © 2004 IEEE 


	footer1: 


